Specialist Methods

(Year 11 and 12)

Unit A

A1: Functions and Graphs

- Functions
- Lines and linear relationships
- Quadratic relationships
- Polynomials and Powers
- Inverse proportion
- Graphs of relations

A2: Trigonometric Functions

- Cosine and sine rules
- Unit Circle
- Area of triangle
- Circular measure and radian measure
- Arc length and areas of sectors and segments in circles
- Exact values
- Graphs of $y=\sin x, y=\cos x$, and $y=\tan x$
- Amplitude
- Period
- Phase
- Angle sum and difference identities

- Trigonometric functions
- Modelling and problem solving

A3: Counting and Probability

Combinations

- Notation $\binom{n}{r}$ and the formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- Expand $(x+y)^{n}$
- Binomial coefficients, $(a x+b y)^{n}$
- Pascal's triangle and its properties
- Language of events and sets
- Sample spaces and events
- Union, Intersection, complement and mutually exclusive events
- Problems solving using Venn Diagrams

Fundamentals of probability

- likelihood of occurrence
- the probability scale: $0 \leq P(A) \leq 1$
- Addition Rule $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Relative frequencies
- Conditional probability and independence
- $\quad P(A \mid B), P(A \cap B)=P(A \mid B) P(B)$
- Independence of an event A from an event B,
- Probability trees
- Independent events A and B, and symmetry of independence

NEWTON

Unit B

B1: Exponential Functions

Indices and the index laws:

- Index laws
- Fractional indices
- Scientific notation and significant figures
- Large and very small numbers
- Indicial equations and in equations
- The inverses of exponentials
- solve equations involving indices using logarithms

Exponential functions:

- Algebraic properties
- Sketch graphs, asymptotes, translations ($y=a^{x}+b$ and $y=a^{x+c}$) and dilations ($y=b a^{x}$)
- Modelling by exponential functions, practical problems
- solve equations and in equations

B2: Arithmetic and Geometric Sequence and Series

General sequences and number patterns

- Number Patterns
- Equations describing Fibonacci, triangular and perfect numbers \quad
- Algebraic rules for number patterns
- Sigma notation for series

Arithmetic sequences:

- Recursive definition of an arithmetic sequence: $t_{n+1}=t_{n}+d$
- General form of AP $t_{n}=t_{1}+(n-1) d$
- Applications in discrete linear growth or decay, including simple interest
- Sum of the first n terms of an arithmetic sequence

Geometric sequences:

- Recursive definition of a geometric sequence: $t_{n+1}=r t_{n}$
- General form of $t_{n}=r^{n-1} t_{1}$
- Limiting behaviour as $n \rightarrow \infty$ of the terms t_{n} and the common ratio r
- Limiting sum of a geometric sequence
- Sum of first n terms of GP sequence $S_{n}=t_{1} \frac{r^{n}-1}{r-1}$
- Applications of GP in geometric growth or decay, including compound interest and the determination of half-lives

B3: Introduction to Differential Calculus

Rates of change:

- Average rate of change $\frac{f(x+h)-f(x)}{h}$
- Leibniz notation δx and δy for changes or increments in the variables x and y
- Use $\frac{\delta y}{\delta x}$ for the difference quotient $\frac{f(x+h)-f(x)}{h}$ where $y=f(x)$
- Slope or gradient of a chord or secant of the graph of $y=f(x)$ as $\frac{f(x+h)-f(x)}{h}$ and $\frac{\delta y}{\delta x}$

The concept of the derivative:

- Continuity and discontinuity of functions, types
- Limits of functions from the left and from the right
- Concept of limit $\frac{f(x+h)-f(x)}{h}$ as $h \rightarrow 0$
- $f^{\prime}(x)$ as $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $\frac{d y}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$ and the correspondence $\frac{d y}{d x}=f^{\prime}(x)$ where $y=f(x)$
- Applications of rates of change --flow from different shaped vessels, and sketch graphs describing these rates
- Instantaneous rate of change
- Compare average and instantaneous rates of change
- Relationship between the graphs of $f(x)$ and $f^{\prime}(x)$

$$
(x) \text { and } f^{\prime}(x)
$$

Computation of derivatives:

- Value of a derivative for simple power functions
- Variable rates of change of non-linear functions
- Establish the formula $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for positive integers n by expanding $(x+h)^{n}$ or by factorising $(x+h)^{n}-x^{n}$
- Extend the formula $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ to apply for all rational n.

Properties of derivatives:

- Function is differentiable? Conditions for differentiability of a function
- Concept of the derivative as a function
- recognise and use linearity properties of the derivative
- Calculate derivatives of polynomials and other linear combinations of power functions.
- Stationary points and their nature from graphs of derivative functions and vice versa

Applications of derivatives:

- To find instantaneous rates of change
- To find the slope of a tangent and normal and the equation of the tangent and normal
- Interpret position-time graphs, with velocity as the slope of the tangent
- Sketch curves associated with polynomials;
- To find stationary points, and local and global maxima and minima;
- Examine behaviour as $x \rightarrow \infty$ and $x \rightarrow-\infty$
- Applications - optimisation problems arising in a variety of contexts involving polynomials on finite interval domains.
- Applications -- straight line motion graphs including those of position time, velocity and acceleration

Anti-derivatives:

- Anti-derivatives of polynomial functions and
- Applications to a variety of contexts including motion in a straight line.
Practice

Unit C

C1: Logarithmic Function

- Algebraic properties of logarithms
- Logarithmic scales -
- decibels in acoustics,
- the Richter Scale for earthquake magnitude,
- octaves in music, and
- pH in chemistry
- Graph of $y=\log _{a} x(a>1)$ including asymptotes, and
- Translations $y=\log _{a} x+b$ and $y=\log _{a}(x+c)$
- Equations involving logarithmic functions algebraically and graphically
- Applications of logarithmic functions to model and solve practical problems

C2: Further Differentiation and Applications

Differentiation rules:

- Product and quotient rules
- Composition of functions and chain rule

- Applications of Chain Rule

Exponential functions:

- Gradient of $y=a^{x}$ at $(0,1)$

- Use the formulae $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and $\frac{d}{d x}\left(a^{x}\right)=\log _{e}(a) a^{x}$
- Applications of exponential functions and their derivatives to solve practical problems.

Logarithmic functions:

- Natural logarithm $\ln x=\log _{e} x$
- Inverse relationship of the functions $y=e^{x}$ and $y=\ln x$
- Use the formulae $\frac{d}{d x}(\ln x)=\frac{1}{x}$ and $\frac{d}{d x}(\ln f(x))=\frac{f \prime(x)}{f(x)}$
- Use the formulae $\int \frac{1}{x} d x=\ln |x|+c$ and $\int \frac{f \prime(x)}{f(x)} d x=\ln |f(x)|+c$
- Use logarithmic functions and their derivatives and integrals to solve practical problems.

Trigonometric functions:

- $\frac{d}{d x}(\sin x)=\cos x$, and $\frac{d}{d x}(\cos x)=-\sin x$
- use trigonometric functions and their derivatives to solve practical problems.

Further Differentiation:

- Applications of product, quotient and chain rule to differentiate functions such as $x e^{x}, \tan x$, $\frac{1}{x^{n}}, x \sin x, e^{-x} \sin x, \ln (\sin (x)), \ln (f(x))$, and $f(a x+b)$
- derivatives of the reciprocal trigonometric functions (sec, cosec, cot)

Second derivative and applications of differentiation:

- Concept of the second derivative as the rate of change of the first derivative function
- Acceleration as the second derivative of position with respect to time
- Concepts of concavity and points of inflection and their relationship with the second derivative
- Use of the second derivative test for finding local maxima and minima
- Graph of a function using first and second derivatives to locate stationary points and points of inflection
- Optimisation problems-- using first and second derivatives.
CONCEPTS
PRACTICE
PERFORMANCE

C3: Integrals

Anti-differentiation:

- Use the formula $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c$ for $n \neq-1$
- Use the formula $\int e^{x} d x=e^{x}+c$
- Use the formula $\int \frac{f \prime(x)}{f(x)} d x=\ln (f(x))+c$
- Integrals of the derivatives of trigonometric functions (including reciprocal functions)
- Use linearity of anti-differentiation
- Indefinite integrals of the form $\int f(a x+b) d x$
- Identify families of curves with the same derivative function
- Find $f(x)$, given $f^{\prime}(x)$ and an initial condition $f(a)=b$
- Displacement given velocity in linear motion problems.

Definite integrals:

- Area problem, and use sums of the form $\sum_{i} f\left(x_{i}\right) \delta x_{i}$ to estimate the area under the curve $y=f(x)$
- Definite integral $\int_{a}^{b} f(x) d x$ as area under the curve $y=f(x)$ if $f(x)>0$
- Definite integral $\int_{a}^{b} f(x) d x$ as a limit of sums of the form $\sum_{i} f\left(x_{i}\right) \delta x_{i}$
- Interpret $\int_{a}^{b} f(x) d x$ as a sum of signed areas
- Additivity and linearity of definite integrals \square

Fundamental theorem:

- Concept of the signed area function $F(x)=\int_{a}^{x} f(t) d t$
- Use the theorem: $F^{\prime}(x)=\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$, its proof geometrically
- Use the formula $\int_{a}^{b} f(x) d x=F(b)-F(a)$ and use it to calculate definite integrals

Applications of integration:

- Area bounded by a curve and either axis
- Total change by integrating instantaneous or marginal rate of change
- Area between curves in simple cases
- Determine positions given acceleration and initial values of position and velocity
- Volumes of solids of revolution formed by rotating simple regions around the x axis

Unit D

D1: Simple Linear Regression

- Scatter plots of two variables
- Simple linear regression of y on $\mathrm{x}(\hat{y}=b x+a)$ using method of least squares, including Interpolation and Extrapolation
- Correlation coefficient (at least Pearson's Method) and coefficient of determination
- Line of best fit e.g. Excel, Geogebra, and Calculator etc.
- Applications to use real-life data

D2: Discrete Random Variables

General discrete random variables:

- Concepts of a discrete random variable, probability function, and their use in modelling data
- Relative frequencies
- Uniform discrete random variables
- Non-uniform discrete random variables, for example Poisson and Hypergeometric distribution
- Mean or expected value of a discrete random variable as a measurement of centre, and evaluate it in simple cases
- Variance and standard deviation of a discrete random variable as a measures of spread, and evaluate them in simple cases
- Means and variances of linear combinations of random variables (e.g. $(E(a X+b)=a E(X)+b$, $\sigma_{a X+c}^{2}=a^{2} \sigma_{X}^{2}$, etc)
- Applications of discrete random variables and associated probabilities

Bernoulli distributions:

- use a Bernoulli random variable as a model for two-outcome situations
- identify contexts suitable for modelling by Bernoulli random variables
- recognise the mean p and variance $p(1-p)$ of the Bernoulli distribution with parameter p
- use Bernoulli random variables and associated probabilities to model data and solve practical problems.

Binomial distributions:

- Bernoulli trials and the concept of a binomial random variable
- Modelling by binomial random variables
- Binomial distribution
- Markov Chains
- Applications to model real-life data, drawing inferences from specific to general

D3: Continuous Random Variables and Normal Distribution

General continuous random variables:

- Relative frequencies and histograms
- Concepts of a probability density function, cumulative distribution function, and probabilities associated with a continuous random variable given by integrals
- Examine simple types of continuous random variables and use them in appropriate contexts
- Expected value, variance and standard deviation of a continuous random variable and evaluate them in simple cases
- Effects of linear changes of scale and origin on the mean and the standard deviation

Normal distributions:

- Modelling by normal random variables
- Graph of the probability density function of the normal distribution with mean μ and standard deviation σ and the use of the standard normal distribution
- Probabilities and quantiles associated with a given normal distribution using technology, and use these to solve practical problems.
- Calculate interval estimate of the mean (e.g. 95\% confidence limits)
- Normal approximation to Binomial Distribution

D4: Interval Estimates for Proportions

PRACTICE

Random sampling:

- Bias in samples, and procedures to ensure randomness
- Variability of random samples from various types of distributions, including uniform, normal and Bernoulli

Sample proportions:

- Concept of the sample proportion \hat{p} as a random variable whose value varies between samples, and the formulas for the mean p and standard deviation $\sqrt{(p(1-p) / n}$ of the sample proportion \hat{p}
- Approximate normality of the distribution of \hat{p} for large samples
- Simulate repeated random sampling

Confidence intervals for proportions:

- Interval estimate for a parameter associated with a random variable
- Quantile for the standard normal distribution
- Margin of error $E=z \sqrt{(\hat{p}(1-\hat{p}) / n}$ and understand the trade-off between margin of error and level of confidence
- use simulation to illustrate variations in confidence intervals between samples and to show that most but not all confidence intervals contain p

